Text Size: a  |   a 

Are We Close to an MS Cure? A Look at Some Medications on the Pipeline

August 22, 2017

The development of new medicines can take 10 to 15 years from testing in a laboratory to being commercially available. For every 10,000 compounds tested, fewer than one or two become licensed treatments, with many rejected on the grounds of their safety, quality, and efficacy.

Some therapies in their final phase of clinical trials are listed below. If the drugs prove effective in this phase, data from phases I through III are presented to the FDA for approval. Only 25 to 30 percent of drugs progress to the next stage following FDA approval.


Laquinimod is an experimental drug in phase III trials for relapsing MS, and phase II trials for PPMS. Laquinimod may prevent immune cells from reaching the brain. Investigations have indicated that it has both anti-inflammatory and neuroprotective actions, and it may affect the levels of certain cytokines, which are substances secreted by immune cells, as well as diminish the immune cells that gain passage to the brain and spinal cord.

Phase III studies of Laquinimod have shown a 23 percent reduction in annual relapse rate compared with a placebo, a 33 percent decrease in disability progression, and a 44 percent reduction in brain volume loss.


The idea behind autologous hematopoietic stem cell transplantation (AHSCT) is to "reboot" the immune system in people with MS. Hematopoietic, or blood cell-producing, stems cells derived from the person's own (autologous) blood or bone marrow are collected and stored.

After chemotherapy drugs are used to deplete much of the immune system, the stored stem cells are then reintroduced to the body, and the new cells make their way to the bone marrow and gradually rebuild the immune system within 3 to 6 months.

Imperial College London in the United Kingdom recently published the long-term outcomes of AHSCT in people with relapsing MS. They revealed that AHSCT might halt the symptoms of the disease from progressing for 5 years in 46 percent of MS patients.

However, the treatment carries significant risk due to the involvement of aggressive chemotherapy, the researchers stress.


MD1003 (high-dose biotin) is being tested in phase III trials for primary and secondary progressive MS. The drug is a highly concentrated form of biotin - 10,000 times the recommended daily intake - that activates enzymes involved in cell growth and myelin production. High doses of biotin may promote myelin repair.

Investigators compared MD1003 with a placebo in primary and secondary progressive MS. They found that 13 percent of individuals in the MD1003 group improved in disability after 9 months compared with no improvement in the placebo group.


Siponimod is being developed for use in SPMS. The drug works by trapping T cells and B cells in the body's lymph nodes, which prevents them from entering the brain and spinal cord and causing damage to myelin.

In a phase III trial, siponimod was found to lower the risk of disability progression by 21 percent at 3 months of treatment and 26 percent at 6 months compared with a placebo. The drug was also shown to reduce the number of relapses experienced and brain shrinkage, or atrophy.